200+ Machine Learning Algorithms of caret Package in R
When we build a model we have to use a machine learning algorithm to train our model. There are 200+ machine learning algorithms in the caret package. When we build models we do not use only an algorithm. We use different algorithms to build multiple models and select the best one among them which gives the best result. Caret Package is a comprehensive framework for building machine learning models in R. To know the available algorithms of caret package in R, we can write following command:
modelnames <- paste(names(getModelInfo()), collapse=', ')
modelnames
'ada, AdaBag, AdaBoost.M1, adaboost, amdai, ANFIS, avNNet, awnb, awtan, bag, bagEarth, bagEarthGCV, bagFDA, bagFDAGCV, bam, bartMachine, bayesglm, binda, blackboost, blasso, blassoAveraged, bridge, brnn, BstLm, bstSm, bstTree, C5.0, C5.0Cost, C5.0Rules, C5.0Tree, cforest, chaid, CSimca, ctree, ctree2, cubist, dda, deepboost, DENFIS, dnn, dwdLinear, dwdPoly, dwdRadial, earth, elm, enet, evtree, extraTrees, fda, FH.GBML, FIR.DM, foba, FRBCS.CHI, FRBCS.W, FS.HGD, gam, gamboost, gamLoess, gamSpline, gaussprLinear, gaussprPoly, gaussprRadial, gbmh2o, gbm, gcvEarth, GFS.FR.MOGUL, GFS.LT.RS, GFS.THRIFT, glm.nb, glm, glmboost, glmneth2o, glmnet, glmStepAIC, gpls, hda, hdda, hdrda, HYFIS, icr, J48, JRip, kernelpls, kknn, knn, krlsPoly, krlsRadial, lars, lars2, lasso, lda, lda2, leapBackward, leapForward, leapSeq, Linda, lm, lmStepAIC, LMT, loclda, logicBag, LogitBoost, logreg, lssvmLinear, lssvmPoly, lssvmRadial, lvq, M5, M5Rules, manb, mda, Mlda, mlp, mlpKerasDecay, mlpKerasDecayCost, mlpKerasDropout, mlpKerasDropoutCost, mlpML, mlpSGD, mlpWeightDecay, mlpWeightDecayML, monmlp, msaenet, multinom, mxnet, mxnetAdam, naive_bayes, nb, nbDiscrete, nbSearch, neuralnet, nnet, nnls, nodeHarvest, null, OneR, ordinalNet, ORFlog, ORFpls, ORFridge, ORFsvm, ownn, pam, parRF, PART, partDSA, pcaNNet, pcr, pda, pda2, penalized, PenalizedLDA, plr, pls, plsRglm, polr, ppr, PRIM, protoclass, pythonKnnReg, qda, QdaCov, qrf, qrnn, randomGLM, ranger, rbf, rbfDDA, Rborist, rda, regLogistic, relaxo, rf, rFerns, RFlda, rfRules, ridge, rlda, rlm, rmda, rocc, rotationForest, rotationForestCp, rpart, rpart1SE, rpart2, rpartCost, rpartScore, rqlasso, rqnc, RRF, RRFglobal, rrlda, RSimca, rvmLinear, rvmPoly, rvmRadial, SBC, sda, sdwd, simpls, SLAVE, slda, smda, snn, sparseLDA, spikeslab, spls, stepLDA, stepQDA, superpc, svmBoundrangeString, svmExpoString, svmLinear, svmLinear2, svmLinear3, svmLinearWeights, svmLinearWeights2, svmPoly, svmRadial, svmRadialCost, svmRadialSigma, svmRadialWeights, svmSpectrumString, tan, tanSearch, treebag, vbmpRadial, vglmAdjCat, vglmContRatio, vglmCumulative, widekernelpls, WM, wsrf, xgbDART, xgbLinear, xgbTree, xyf'
Each of those is a machine learning algorithm caret supports. Yes, it’s a huge list! And if you want to know more details like the hyperparameters and if it can be used of regression or classification problem, then write the following command in R:
modelLookup(algo)
Here are the brief information about the above algorithms with their parameters:
Sl | Algorithm Name | method Value | AlgorithmType | Libraries | Tuning Parameters |
---|---|---|---|---|---|
1 | AdaBoost Classification Trees | adaboost | Classification | fastAdaboost | nIter, method |
2 | AdaBoost.M1 | AdaBoost.M1 | Classification | adabag, plyr | mfinal, maxdepth, coeflearn |
3 | Adaptive Mixture Discriminant Analysis | amdai | Classification | adaptDA | model |
4 | Adaptive-Network-Based Fuzzy Inference System | ANFIS | Regression | frbs | num.labels, max.iter |
5 | Adjacent Categories Probability Model for Ordinal Data | vglmAdjCat | Classification | VGAM | parallel, link |
6 | Bagged AdaBoost | AdaBag | Classification | adabag, plyr | mfinal, maxdepth |
7 | Bagged CART | treebag | Classification, Regression | ipred, plyr, e1071 | None |
8 | Bagged FDA using gCV Pruning | bagFDAGCV | Classification | earth | degree |
9 | Bagged Flexible Discriminant Analysis | bagFDA | Classification | earth, mda | degree, nprune |
10 | Bagged Logic Regression | logicBag | Classification, Regression | logicFS | nleaves, ntrees |
11 | Bagged MARS | bagEarth | Classification, Regression | earth | nprune, degree |
12 | Bagged MARS using gCV Pruning | bagEarthGCV | Classification, Regression | earth | degree |
13 | Bagged Model | bag | Classification, Regression | caret | vars |
14 | Bayesian Additive Regression Trees | bartMachine | Classification, Regression | bartMachine | num_trees, k, alpha, beta, nu |
15 | Bayesian Generalized Linear Model | bayesglm | Classification, Regression | arm | None |
16 | Bayesian Regularized Neural Networks | brnn | Regression | brnn | neurons |
17 | Bayesian Ridge Regression | bridge | Regression | monomvn | None |
18 | Bayesian Ridge Regression (Model Averaged) | blassoAveraged | Regression | monomvn | None |
19 | Binary Discriminant Analysis | binda | Classification | binda | lambda.freqs |
20 | Boosted Classification Trees | ada | Classification | ada, plyr | iter, maxdepth, nu |
21 | Boosted Generalized Additive Model | gamboost | Classification, Regression | mboost, plyr, import | mstop, prune |
22 | Boosted Generalized Linear Model | glmboost | Classification, Regression | plyr, mboost | mstop, prune |
23 | Boosted Linear Model | BstLm | Classification, Regression | bst, plyr | mstop, nu |
24 | Boosted Logistic Regression | LogitBoost | Classification | caTools | nIter |
25 | Boosted Smoothing Spline | bstSm | Classification, Regression | bst, plyr | mstop, nu |
26 | Boosted Tree | blackboost | Classification, Regression | party, mboost, plyr, partykit | mstop, maxdepth |
27 | Boosted Tree | bstTree | Classification, Regression | bst, plyr | mstop, maxdepth, nu |
28 | C4.5-like Trees | J48 | Classification | RWeka | C, M |
29 | C5.0 | C5.0 | Classification | C50, plyr | trials, model, winnow |
30 | CART | rpart | Classification, Regression | rpart | cp |
31 | CART | rpart1SE | Classification, Regression | rpart | None |
32 | CART | rpart2 | Classification, Regression | rpart | maxdepth |
33 | CART or Ordinal Responses | rpartScore | Classification | rpartScore, plyr | cp, split, prune |
34 | CHi-squared Automated Interaction Detection | chaid | Classification | CHAID | alpha2, alpha3, alpha4 |
35 | Conditional Inference Random Forest | cforest | Classification, Regression | party | mtry |
36 | Conditional Inference Tree | ctree | Classification, Regression | party | mincriterion |
37 | Conditional Inference Tree | ctree2 | Classification, Regression | party | maxdepth, mincriterion |
38 | Continuation Ratio Model for Ordinal Data | vglmContRatio | Classification | VGAM | parallel, link |
39 | Cost-Sensitive C5.0 | C5.0Cost | Classification | C50, plyr | trials, model, winnow, cost |
40 | Cost-Sensitive CART | rpartCost | Classification | rpart, plyr | cp, Cost |
41 | Cubist | cubist | Regression | Cubist | committees, neighbors |
42 | Cumulative Probability Model for Ordinal Data | vglmCumulative | Classification | VGAM | parallel, link |
43 | DeepBoost | deepboost | Classification | deepboost | num_iter, tree_depth, beta, lambda, loss_type |
44 | Diagonal Discriminant Analysis | dda | Classification | sparsediscrim | model, shrinkage |
45 | Distance Weighted Discrimination with Polynomial Kernel | dwdPoly | Classification | kerndwd | lambda, qval, degree, scale |
46 | Distance Weighted Discrimination with Radial Basis Function Kernel | dwdRadial | Classification | kernlab, kerndwd | lambda, qval, sigma |
47 | Dynamic Evolving Neural-Fuzzy Inference System | DENFIS | Regression | frbs | Dthr, max.iter |
48 | Elasticnet | enet | Regression | elasticnet | fraction, lambda |
49 | Ensembles of Generalized Linear Models | randomGLM | Classification, Regression | randomGLM | maxInteractionOrder |
50 | eXtreme Gradient Boosting | xgbDART | Classification, Regression | xgboost, plyr | nrounds, max_depth, eta, gamma, subsample, colsample_bytree, rate_drop, skip_drop, min_child_weight |
51 | eXtreme Gradient Boosting | xgbLinear | Classification, Regression | xgboost | nrounds, lambda, alpha, eta |
52 | eXtreme Gradient Boosting | xgbTree | Classification, Regression | xgboost, plyr | nrounds, max_depth, eta, gamma, colsample_bytree, min_child_weight, subsample |
53 | Extreme Learning Machine | elm | Classification, Regression | elmNN | nhid, actfun |
54 | Factor-Based Linear Discriminant Analysis | RFlda | Classification | HiDimDA | q |
55 | Flexible Discriminant Analysis | fda | Classification | earth, mda | degree, nprune |
56 | Fuzzy Inference Rules by Descent Method | FIR.DM | Regression | frbs | num.labels, max.iter |
57 | Fuzzy Rules Using Chi’s Method | FRBCS.CHI | Classification | frbs | num.labels, type.mf |
58 | Fuzzy Rules Using Genetic Cooperative-Competitive Learning and Pittsburgh | FH.GBML | Classification | frbs | max.num.rule, popu.size, max.gen |
59 | Fuzzy Rules Using the Structural Learning Algorithm on Vague Environment | SLAVE | Classification | frbs | num.labels, max.iter, max.gen |
60 | Fuzzy Rules via MOGUL | GFS.FR.MOGUL | Regression | frbs | max.gen, max.iter, max.tune |
61 | Fuzzy Rules via Thrift | GFS.THRIFT | Regression | frbs | popu.size, num.labels, max.gen |
62 | Fuzzy Rules with Weight Factor | FRBCS.W | Classification | frbs | num.labels, type.mf |
63 | Gaussian Process | gaussprLinear | Classification, Regression | kernlab | None |
64 | Gaussian Process with Polynomial Kernel | gaussprPoly | Classification, Regression | kernlab | degree, scale |
65 | Gaussian Process with Radial Basis Function Kernel | gaussprRadial | Classification, Regression | kernlab | sigma |
66 | Generalized Additive Model using LOESS | gamLoess | Classification, Regression | gam | span, degree |
67 | Generalized Additive Model using Splines | bam | Classification, Regression | mgcv | select, method |
68 | Generalized Additive Model using Splines | gam | Classification, Regression | mgcv | select, method |
69 | Generalized Additive Model using Splines | gamSpline | Classification, Regression | gam | df |
70 | Generalized Linear Model | glm | Classification, Regression | None | |
71 | Generalized Linear Model with Stepwise Feature Selection | glmStepAIC | Classification, Regression | MASS | None |
72 | Generalized Partial Least Squares | gpls | Classification | gpls | K.prov |
73 | Genetic Lateral Tuning and Rule Selection of Linguistic Fuzzy Systems | GFS.LT.RS | Regression | frbs | popu.size, num.labels, max.gen |
74 | glmnet | glmnet | Classification, Regression | glmnet, Matrix | alpha, lambda |
75 | glmnet | glmnet_h2o | Classification, Regression | h2o | alpha, lambda |
76 | Gradient Boosting Machines | gbm_h2o | Classification, Regression | h2o | ntrees, max_depth, min_rows, learn_rate, col_sample_rate |
77 | Greedy Prototype Selection | protoclass | Classification | proxy, protoclass | eps, Minkowski |
78 | Heteroscedastic Discriminant Analysis | hda | Classification | hda | gamma, lambda, newdim |
79 | High Dimensional Discriminant Analysis | hdda | Classification | HDclassif | threshold, model |
80 | High-Dimensional Regularized Discriminant Analysis | hdrda | Classification | sparsediscrim | gamma, lambda, shrinkage_type |
81 | Hybrid Neural Fuzzy Inference System | HYFIS | Regression | frbs | num.labels, max.iter |
82 | Independent Component Regression | icr | Regression | fastICA | n.comp |
83 | k-Nearest Neighbors | kknn | Classification, Regression | kknn | kmax, distance, kernel |
84 | k-Nearest Neighbors | knn | Classification, Regression | k | |
85 | L2 Regularized Linear Support Vector Machines with Class Weights | svmLinearWeights2 | Classification | LiblineaR | cost, Loss, weight |
86 | L2 Regularized Support Vector Machine (dual) with Linear Kernel | svmLinear3 | Classification, Regression | LiblineaR | cost, Loss |
87 | Learning Vector Quantization | lvq | Classification | class | size, k |
88 | Least Angle Regression | lars | Regression | lars | fraction |
89 | Least Angle Regression | lars2 | Regression | lars | step |
90 | Least Squares Support Vector Machine | lssvmLinear | Classification | kernlab | tau |
91 | Least Squares Support Vector Machine with Polynomial Kernel | lssvmPoly | Classification | kernlab | degree, scale, tau |
92 | Least Squares Support Vector Machine with Radial Basis Function Kernel | lssvmRadial | Classification | kernlab | sigma, tau |
93 | Linear Discriminant Analysis | lda | Classification | MASS | None |
94 | Linear Discriminant Analysis | lda2 | Classification | MASS | dimen |
95 | Linear Discriminant Analysis with Stepwise Feature Selection | stepLDA | Classification | klaR, MASS | maxvar, direction |
96 | Linear Distance Weighted Discrimination | dwdLinear | Classification | kerndwd | lambda, qval |
97 | Linear Regression | lm | Regression | intercept | |
98 | Linear Regression with Backwards Selection | leapBackward | Regression | leaps | nvmax |
99 | Linear Regression with Forward Selection | leapForward | Regression | leaps | nvmax |
100 | Linear Regression with Stepwise Selection | leapSeq | Regression | leaps | nvmax |
101 | Linear Regression with Stepwise Selection | lmStepAIC | Regression | MASS | None |
102 | Linear Support Vector Machines with Class Weights | svmLinearWeights | Classification | e1071 | cost, weight |
103 | Localized Linear Discriminant Analysis | loclda | Classification | klaR | k |
104 | Logic Regression | logreg | Classification, Regression | LogicReg | treesize, ntrees |
105 | Logistic Model Trees | LMT | Classification | RWeka | iter |
106 | Maximum Uncertainty Linear Discriminant Analysis | Mlda | Classification | HiDimDA | None |
107 | Mixture Discriminant Analysis | mda | Classification | mda | subclasses |
108 | Model Averaged Naive Bayes Classifier | manb | Classification | bnclassify | smooth, prior |
109 | Model Averaged Neural Network | avNNet | Classification, Regression | nnet | size, decay, bag |
110 | Model Rules | M5Rules | Regression | RWeka | pruned, smoothed |
111 | Model Tree | M5 | Regression | RWeka | pruned, smoothed, rules |
112 | Monotone Multi-Layer Perceptron Neural Network | monmlp | Classification, Regression | monmlp | hidden1, n.ensemble |
113 | Multi-Layer Perceptron | mlp | Classification, Regression | RSNNS | size |
114 | Multi-Layer Perceptron | mlpWeightDecay | Classification, Regression | RSNNS | size, decay |
115 | Multi-Layer Perceptron, multiple layers | mlpWeightDecayML | Classification, Regression | RSNNS | layer1, layer2, layer3, decay |
116 | Multi-Layer Perceptron, with multiple layers | mlpML | Classification, Regression | RSNNS | layer1, layer2, layer3 |
117 | Multi-Step Adaptive MCP-Net | msaenet | Classification, Regression | msaenet | alphas, nsteps, scale |
118 | Multilayer Perceptron Network by Stochastic Gradient Descent | mlpSGD | Classification, Regression | FCNN4R, plyr | size, l2reg, lambda, learn_rate, momentum, gamma, minibatchsz, repeats |
119 | Multilayer Perceptron Network with Dropout | mlpKerasDropout | Classification, Regression | keras | size, dropout, batch_size, lr, rho, decay, activation |
120 | Multilayer Perceptron Network with Dropout | mlpKerasDropoutCost | Classification | keras | size, dropout, batch_size, lr, rho, decay, cost, activation |
121 | Multilayer Perceptron Network with Weight Decay | mlpKerasDecay | Classification, Regression | keras | size, lambda, batch_size, lr, rho, decay, activation |
122 | Multilayer Perceptron Network with Weight Decay | mlpKerasDecayCost | Classification | keras | size, lambda, batch_size, lr, rho, decay, cost, activation |
123 | Multivariate Adaptive Regression Spline | earth | Classification, Regression | earth | nprune, degree |
124 | Multivariate Adaptive Regression Splines | gcvEarth | Classification, Regression | earth | degree |
125 | Naive Bayes | naive_bayes | Classification | naivebayes | laplace, usekernel, adjust |
126 | Naive Bayes | nb | Classification | klaR | fL, usekernel, adjust |
127 | Naive Bayes Classifier | nbDiscrete | Classification | bnclassify | smooth |
128 | Naive Bayes Classifier with Attribute Weighting | awnb | Classification | bnclassify | smooth |
129 | Nearest Shrunken Centroids | pam | Classification | pamr | threshold |
130 | Negative Binomial Generalized Linear Model | glm.nb | Regression | MASS | link |
131 | Neural Network | mxnet | Classification, Regression | mxnet | layer1, layer2, layer3, learning.rate, momentum, dropout, activation |
132 | Neural Network | mxnetAdam | Classification, Regression | mxnet | layer1, layer2, layer3, dropout, beta1, beta2, learningrate, activation |
133 | Neural Network | neuralnet | Regression | neuralnet | layer1, layer2, layer3 |
134 | Neural Network | nnet | Classification, Regression | nnet | size, decay |
135 | Neural Networks with Feature Extraction | pcaNNet | Classification, Regression | nnet | size, decay |
136 | Non-Convex Penalized Quantile Regression | rqnc | Regression | rqPen | lambda, penalty |
137 | Non-Informative Model | null | Classification, Regression | None | |
138 | Non-Negative Least Squares | nnls | Regression | nnls | None |
139 | Oblique Random Forest | ORFlog | Classification | obliqueRF | mtry |
140 | Oblique Random Forest | ORFpls | Classification | obliqueRF | mtry |
141 | Oblique Random Forest | ORFridge | Classification | obliqueRF | mtry |
142 | Oblique Random Forest | ORFsvm | Classification | obliqueRF | mtry |
143 | Optimal Weighted Nearest Neighbor Classifier | ownn | Classification | snn | K |
144 | Ordered Logistic or Probit Regression | polr | Classification | MASS | method |
145 | Parallel Random Forest | parRF | Classification, Regression | e1071, randomForest, foreach, import | mtry |
146 | partDSA | partDSA | Classification, Regression | partDSA | cut.off.growth, MPD |
147 | Partial Least Squares | kernelpls | Classification, Regression | pls | ncomp |
148 | Partial Least Squares | pls | Classification, Regression | pls | ncomp |
149 | Partial Least Squares | simpls | Classification, Regression | pls | ncomp |
150 | Partial Least Squares | widekernelpls | Classification, Regression | pls | ncomp |
151 | Partial Least Squares Generalized Linear Models | plsRglm | Classification, Regression | plsRglm | nt, alpha.pvals.expli |
152 | Patient Rule Induction Method | PRIM | Classification | supervisedPRIM | peel.alpha, paste.alpha, mass.min |
153 | Penalized Discriminant Analysis | pda | Classification | mda | lambda |
154 | Penalized Discriminant Analysis | pda2 | Classification | mda | df |
155 | Penalized Linear Discriminant Analysis | PenalizedLDA | Classification | penalizedLDA, plyr | lambda, K |
156 | Penalized Linear Regression | penalized | Regression | penalized | lambda1, lambda2 |
157 | Penalized Logistic Regression | plr | Classification | stepPlr | lambda, cp |
158 | Penalized Multinomial Regression | multinom | Classification | nnet | decay |
159 | Penalized Ordinal Regression | ordinalNet | Classification | ordinalNet, plyr | alpha, criteria, link |
160 | Polynomial Kernel Regularized Least Squares | krlsPoly | Regression | KRLS | lambda, degree |
161 | Principal Component Analysis | pcr | Regression | pls | ncomp |
162 | Projection Pursuit Regression | ppr | Regression | nterms | |
163 | Quadratic Discriminant Analysis | qda | Classification | MASS | None |
164 | Quadratic Discriminant Analysis with Stepwise Feature Selection | stepQDA | Classification | klaR, MASS | maxvar, direction |
165 | Quantile Random Forest | qrf | Regression | quantregForest | mtry |
166 | Quantile Regression Neural Network | qrnn | Regression | qrnn | n.hidden, penalty, bag |
167 | Quantile Regression with LASSO penalty | rqlasso | Regression | rqPen | lambda |
168 | Radial Basis Function Kernel Regularized Least Squares | krlsRadial | Regression | KRLS, kernlab | lambda, sigma |
169 | Radial Basis Function Network | rbf | Classification, Regression | RSNNS | size |
170 | Radial Basis Function Network | rbfDDA | Classification, Regression | RSNNS | negativeThreshold |
171 | Random Ferns | rFerns | Classification | rFerns | depth |
172 | Random Forest | ordinalRF | Classification | e1071, ranger, dplyr, ordinalForest | nsets, ntreeperdiv, ntreefinal |
173 | Random Forest | ranger | Classification, Regression | e1071, ranger, dplyr | mtry, splitrule, min.node.size |
174 | Random Forest | Rborist | Classification, Regression | Rborist | predFixed, minNode |
175 | Random Forest | rf | Classification, Regression | randomForest | mtry |
176 | Random Forest by Randomization | extraTrees | Classification, Regression | extraTrees | mtry, numRandomCuts |
177 | Random Forest Rule-Based Model | rfRules | Classification, Regression | randomForest, inTrees, plyr | mtry, maxdepth |
178 | Regularized Discriminant Analysis | rda | Classification | klaR | gamma, lambda |
179 | Regularized Linear Discriminant Analysis | rlda | Classification | sparsediscrim | estimator |
180 | Regularized Logistic Regression | regLogistic | Classification | LiblineaR | cost, loss, epsilon |
181 | Regularized Random Forest | RRF | Classification, Regression | randomForest, RRF | mtry, coefReg, coefImp |
182 | Regularized Random Forest | RRFglobal | Classification, Regression | RRF | mtry, coefReg |
183 | Relaxed Lasso | relaxo | Regression | relaxo, plyr | lambda, phi |
184 | Relevance Vector Machines with Linear Kernel | rvmLinear | Regression | kernlab | None |
185 | Relevance Vector Machines with Polynomial Kernel | rvmPoly | Regression | kernlab | scale, degree |
186 | Relevance Vector Machines with Radial Basis Function Kernel | rvmRadial | Regression | kernlab | sigma |
187 | Ridge Regression | ridge | Regression | elasticnet | lambda |
188 | Ridge Regression with Variable Selection | foba | Regression | foba | k, lambda |
189 | Robust Linear Discriminant Analysis | Linda | Classification | rrcov | None |
190 | Robust Linear Model | rlm | Regression | MASS | intercept, psi |
191 | Robust Mixture Discriminant Analysis | rmda | Classification | robustDA | K, model |
192 | Robust Quadratic Discriminant Analysis | QdaCov | Classification | rrcov | None |
193 | Robust Regularized Linear Discriminant Analysis | rrlda | Classification | rrlda | lambda, hp, penalty |
194 | Robust SIMCA | RSimca | Classification | rrcovHD | None |
195 | ROC-Based Classifier | rocc | Classification | rocc | xgenes |
196 | Rotation Forest | rotationForest | Classification | rotationForest | K, L |
197 | Rotation Forest | rotationForestCp | Classification | rpart, plyr, rotationForest | K, L, cp |
198 | Rule-Based Classifier | JRip | Classification | RWeka | NumOpt, NumFolds, MinWeights |
199 | Rule-Based Classifier | PART | Classification | RWeka | threshold, pruned |
200 | Self-Organizing Maps | xyf | Classification, Regression | kohonen | xdim, ydim, user.weights, topo |
201 | Semi-Naive Structure Learner Wrapper | nbSearch | Classification | bnclassify | k, epsilon, smooth, final_smooth, direction |
202 | Shrinkage Discriminant Analysis | sda | Classification | sda | diagonal, lambda |
203 | SIMCA | CSimca | Classification | rrcov, rrcovHD | None |
204 | Simplified TSK Fuzzy Rules | FS.HGD | Regression | frbs | num.labels, max.iter |
205 | Single C5.0 Ruleset | C5.0Rules | Classification | C50 | None |
206 | Single C5.0 Tree | C5.0Tree | Classification | C50 | None |
207 | Single Rule Classification | OneR | Classification | RWeka | None |
208 | Sparse Distance Weighted Discrimination | sdwd | Classification | sdwd | lambda, lambda2 |
209 | Sparse Linear Discriminant Analysis | sparseLDA | Classification | sparseLDA | NumVars, lambda |
210 | Sparse Mixture Discriminant Analysis | smda | Classification | sparseLDA | NumVars, lambda, R |
211 | Sparse Partial Least Squares | spls | Classification, Regression | spls | K, eta, kappa |
212 | Spike and Slab Regression | spikeslab | Regression | spikeslab, plyr | vars |
213 | Stabilized Linear Discriminant Analysis | slda | Classification | ipred | None |
214 | Stabilized Nearest Neighbor Classifier | snn | Classification | snn | lambda |
215 | Stacked AutoEncoder Deep Neural Network | dnn | Classification, Regression | deepnet | layer1, layer2, layer3, hidden_dropout, visible_dropout |
216 | Stochastic Gradient Boosting | gbm | Classification, Regression | gbm, plyr | n.trees, interaction.depth, shrinkage, n.minobsinnode |
217 | Subtractive Clustering and Fuzzy c-Means Rules | SBC | Regression | frbs | r.a, eps.high, eps.low |
218 | Supervised Principal Component Analysis | superpc | Regression | superpc | threshold, n.components |
219 | Support Vector Machines with Boundrange String Kernel | svmBoundrangeString | Classification, Regression | kernlab | length, C |
220 | Support Vector Machines with Class Weights | svmRadialWeights | Classification | kernlab | sigma, C, Weight |
221 | Support Vector Machines with Exponential String Kernel | svmExpoString | Classification, Regression | kernlab | lambda, C |
222 | Support Vector Machines with Linear Kernel | svmLinear | Classification, Regression | kernlab | C |
223 | Support Vector Machines with Linear Kernel | svmLinear2 | Classification, Regression | e1071 | cost |
224 | Support Vector Machines with Polynomial Kernel | svmPoly | Classification, Regression | kernlab | degree, scale, C |
225 | Support Vector Machines with Radial Basis Function Kernel | svmRadial | Classification, Regression | kernlab | sigma, C |
226 | Support Vector Machines with Radial Basis Function Kernel | svmRadialCost | Classification, Regression | kernlab | C |
227 | Support Vector Machines with Radial Basis Function Kernel | svmRadialSigma | Classification, Regression | kernlab | sigma, C |
228 | Support Vector Machines with Spectrum String Kernel | svmSpectrumString | Classification, Regression | kernlab | length, C |
229 | The Bayesian lasso | blasso | Regression | monomvn | sparsity |
230 | The lasso | lasso | Regression | elasticnet | fraction |
231 | Tree Augmented Naive Bayes Classifier | tan | Classification | bnclassify | score, smooth |
232 | Tree Augmented Naive Bayes Classifier Structure Learner Wrapper | tanSearch | Classification | bnclassify | k, epsilon, smooth, final_smooth, sp |
233 | Tree Augmented Naive Bayes Classifier with Attribute Weighting | awtan | Classification | bnclassify | score, smooth |
234 | Tree Models from Genetic Algorithms | evtree | Classification, Regression | evtree | alpha |
235 | Tree-Based Ensembles | nodeHarvest | Classification, Regression | nodeHarvest | maxinter, mode |
236 | Variational Bayesian Multinomial Probit Regression | vbmpRadial | Classification | vbmp | estimateTheta |
237 | Wang and Mendel Fuzzy Rules | WM | Regression | frbs | num.labels, type.mf |
238 | Weighted Subspace Random Forest | wsrf | Classification | wsrf | mtry |
In this tutorial, I tried to incorporate 200+ Machine Learning Algorithms of caret Packages in R. Bookmark the writeup, so that you do not need to remember the parameters of these 200+ machine learning algorithm. Hope you have enjoyed the tutorial. If you want to get updated, like the facebook page https://www.facebook.com/LearningBigDataAnalytics and stay connected.